DANIEL REIMSCHIISSEL
ECE 3810
HW 6

P1.
Modified diagram to support "lui" instruction[image:]

· Paragraph that describes how/why your changes implement the "lui" instruction.
The changes above implement the “lui” instruction by taking the immediate line and adding 16 bits of 0’s to that signal. The result will be sent to the destination register Write Data. We have a multiplexor that will select 1 when there is an immediate or 0 if it’s R-Type. A lui option will be coming out of the instruction decoder and the mux will go into the destination register when we see the instruction for lui.
· Non-trivial example of the "lui" instruction.
The “lui” instruction stores an immediate value in the 16 most significant bits. Then it resets the rest of the remaining bits to zero. For example, if we had an instruction lui $t1, 61 then $t1 = 0000 0000 0111 1101 0000 0000 0000 0000

· How data values for this instruction flow through the processor.
[image:]
· Minimum length of time that the "lui" instruction needs to complete
[image:]

[image:]

After going through and adding the options through the diagram, the minimum time we would need would be 360ps. This is because after going through the registers and ALU the minimum option we could have would be 310ps adding the 2 mux’s left, we get 350 and need a spare 10ps to make sure it ends 10ps before the end of the clock cycle.
· Table of control signals for the processor for this instruction.

	INSTRUCTION
	REGDST
	ALUSRC
	MEMTO-REG
	REG-WRITE
	MEM-READ
	MEM-WRITE
	BRANCH
	ALUOP1
	ALUOP0
	LUI

	R-FORMAT
	1
	0
	0
	1
	0
	0
	0
	1
	0
	0

	LW
	0
	1
	1
	1
	1
	0
	0
	0
	0
	0

	SW
	X
	1
	X
	0
	0
	1
	0
	0
	0
	0

	BEQ
	X
	0
	X
	0
	0
	0
	1
	0
	1
	0

	LUI
	0
	X
	X
	1
	X
	0
	0
	X
	X
	1

P2.
· Modified diagram to support "jsa" instruction.
[image:]
· Paragraph describing how/why your changes implement "jsa" instruction.

The changes made were adding an additional multiplexor in the upper right to determine the jump target or branch to the next instruction. A line was added to the control so that it recognizes that it’s a jump type not just a register type. The instructions from 5 to 0 are needed to know the func, so we know it’s a jump register. The jump register is set to extend the mux and take the data from rs as input and assign a control 2 to the input of the mux to discern between the address and the register of the branch. The input to the mux comes from the read data and the jump target address is obtained by shifting the lower 26 bits of the jump instruction left 2 bits, then concatenating the upper 4 bits of PC+4.

Non-trivial example of the "jsa" instruction.
For example, if I used this instruction jsa 4($s1) it would first read $s1 from memory, then use the data from memory as the destination address. Then during execution jsa would read the value from $s1 and add offset value of 4. The new memory address if $s1 was 0x0001 would be 0x1000 and that would be the new memory address that the PC would use for the following instruction.
· How the data values for this instruction flow through the processor.
[image:]
JSA reads the value from the specified register ($s0) then adds the offset. The memory address is formed then the data is read from memory as destination address and is used as new PC data.
· Minimum length of time that the "jsa" instruction needs to complete
[image:]
[image:]
After going through and adding the options through the diagram, the minimum time we would need would be 300ps. This is because after going through the instruction memory, the registers and through the final mux we could have 300ps before starting the next clock cycle.

· Table of control signals for the processor for this instruction.

	INSTRUCTION
	REGDST
	ALUSRC
	MEMTO-REG
	REG-WRITE
	MEM-READ
	MEM-WRITE
	BRANCH
	ALUOP1
	ALUOP0

	JSA
	x
	2
	x
	1
	0
	1
	1
	x
	1

P3.
· Fastest clock period and clock frequency at which our single cycle CPU could safely operate
[bookmark: _GoBack]In order to know how fast the single cycle CPU could safely operate we need to know the longest delays. The longest delays to compute would be using a load word instruction because it needs to go through the majority of the components of the processor besides an ALU and shift left and a few read and write components. Below you can see the added values of the data paths and different paths were analyzed and the most expensive was chosen. By adding a 10ps setup time, the clock cycle must at least 670 ps. If we use the 10% variance this would be 670 * 110% or 737 ps. The clock frequency that we would need is the inverse or 1/737 = 0.00136 or 1.36GHz.

[image:]

image6.jpeg
e1ep 9d mou

pC

Instruction [25-0] Jump address [31-0]
P shift
oo eft2/
PC+4 [31-28)
Add T
4
RegDst X
Jump_2
Branch X
[MemRead 1
[MemtoReg 0
Control 'O, 1
MemWrie 1
ALUSTc
RegWrite 1
1
instruction [25-211850 [Reag
Read
address. register 1 Reag
instruction [20-16] | Reaq Gatal
Instruction o | register 2
B0 M| lwite ~ Read
ur data 2
Instruction | || nsiructon (15-11] § | register
Y |1t v
| write
dala_Registers

Instruction [15-0)

/N
16, [sign- | 2

T \extend]

_/

instruction [5-0)

image7.jpg
300ps|

ops

ificant

Instruction [25-0] iMp address (31-0]
Shift
ki left 2
i 2 |pc+api-zg
Tops. [31-28)
Add {
70p;
RegDst
Jump
Branch
[MemRead
Control [ATyop
MemWie
ALUSTc
RegWiite
1
instruction 2521 [Reaq
Read el
address 200ps | 95T Reag
200ps |[[instruction (20-16] [geaq datat
Instruction 4 | regster2 80ps|
B Read
| wite
Instruction | || jnsiruction [15-11] | | register 98122
memory | | 2

9| weie

Instruction [15-0)

data_Registers

VY

18, [sign-

32

T \extend |

‘nsignificant

instruction [5-0)

ghificant

300ps.

640ps

image8.jpg
Tops) (agg ALU
ol Dada ALY
(e (100
RogDst oft2
et insigaificant ~30p
WemRead
Instruction [31-26] MemtoReg
Control
30ps
ops RegWrite
1
nstrucion (25-211_[eag
polb [Read | [¢mmn I Reas
s Reag
o ||Istucton 20161 | gng datad
nstraion [T 1__ g, | eoster2 808
(i W wie Read
nstrueton | |nscion (1511) regser 4122 oops
emery” |§siucton (15-11)
& Twrite
dita Rogistors
Instruction [1:) 32
150 | 16 sign
xtena
simtcant|
Instruction [5-0]

image1.jpeg
Read
address

Instruction
B31-01

Instruction
memory.

register 1

Read
data1

Read

image2.jpeg
| MemwoReg | 000f

mq

RegWrite

Instruction
[31-0]

Instruction
memory

image3.png
The PC register will be ready to output data at the beginning of the clock cycle.
The control logic latency and any other gate latency is 30 ps; control logic outputs will be correct 30 ps
after all inputs arrive.

MUX latency is 20 ps; all MUXs outputs will be correct 20 ps after the last relevant input arrives.

Any ALU that only does addition has a latency of 70 ps.

The general purpose ALU has a latency of 90 ps.

Instruction memory has a latency of 200 ps, and data memory has a latency of 250 ps for reads or writes.
The register file has a read latency of 80 ps. Note: There is an error on my key where the register file looks
like it has a latency of 120 ps. | am not going to update the key, but note that I'm using an incorrect assumption
(120 ps latency instead of the correct 80ps latency).

Any data that is to be written back to any register (register file / PC) must arrive at the register file 10 ps
before the end of the clock cycle. (This is called 'setup time, and it allows the first stage latch of the flip-
flops enough time to capture the data before the edge of the clock arrives.)

Wires, sign extension, and shift left 2 have insignificant latency. (In reality, they'd have a lttle due to wire
delays and the need for signal amplification, but we'l ignore it)

image4.jpg
| Memtokeg | | |
ALUOp _ 230ps

ALUSrc

Read
data 1

Instruction
[31-0]

Instruction
memory

200ps
Instruction [15-0]

ALU
control
30ps,

Instruction [5-0]

image5.jpg
PC+4[31-28]

Read
address

Insiruction
181-0)
Instruction

RegDst X
Jump_p
Branch_X

[MemRead 1

[MemtoReg 0

Instruction [25-21]

Instruction [20-16]

Instruction [15-11]

Control ATGop, 1
MemWrie 1

ALUSrC
RegWrite 1
1

Read
register 1 goag

Reag dalal
register 2

Write
register

Read
data 2

Write

Instruction [15-0)

dala_Registers

N\
16, [sign-| 2

extend
/

instruction [5-0)

DANIEL REIMSCHIISSEL
ECE 3810
HW6

- Purzaon v acras nowuy you choes gkt e s ncin.
TG v T 1 o ooyt e
73 g 1904503 o s Th sl il oSt o 1 o
et 1 Ot v R T i St it et 01
o Ry AL b o o

+ e i f e s pcn
T i o et v i 1 6 st st

it o ey o £ s e 1
o b 1.1 b GG 08 011 5101 5 0005

B —

